Measuring Re, Fs, Qes, Qms and Qts
To measure these parameters using the method outlined below, you'll need to have the following items:
- A power amplifier, rated at 1-10 Watts (RMS) or thereabouts
- Audio frequency oscillator (PC based is fine)
- Digital multimeter (with frequency measurement), or PC based instrument
- An accurate test resistor (any value, although I suggest 10 ohms) A ½W component will be quite sufficient.
- Alligator clip leads - you will need 4 sets of leads (leads may be soldered instead if desired)
Figure 1 shows a typical impedance curve for a loudspeaker (see Figure 5 for the equivalent circuit of this speaker, which was simulated for this article). Resonance causes a large increase in impedance, and at some higher frequency, the inductance (or semi-inductance) of the voice coil causes the impedance to rise again. The region for the initial measurements must be within the "linear" region of the impedance curve. In the example below, resonance is at 27Hz, and the linear region ranges from about 100Hz to 400Hz.
At resonance, the speaker impedance is pure resistance. As the frequency increases towards resonance, the impedance characteristic is inductive. Beyond resonance as impedance falls, the impedance characteristic is capacitive. Within the 'linear' region, the impedance is again (almost) resistive, but at slightly below the speaker's nominal impedance (nominal impedance is usually taken as an average value over the usable frequency range). At the frequency where the inductance of the voice coil becomes significant, impedance rises, and is progressively more inductive as the frequency rises. It is common to add a compensation network to maintain an overall resistive characteristic at these higher frequencies, so that the performance of the (passive) crossover network is not compromised. This is not necessary with an active crossover.
Although a 'pure' inductance is shown in the equivalent circuit, this component is often referred to as 'semi-inductance'. Because of losses (primarily eddy current losses within the pole pieces), the impedance typically rises at around 3-4dB/ octave, rather than the expected (and simulated) 6dB/ octave. This has little or no effect on resonance parameters, and can usually be ignored for these measurements.
Figure 1 - Loudspeaker Impedance Curve
The multimeter should be capable of measuring frequency, as well as AC voltage and resistance. If it cannot, a frequency counter is highly recommended, since the frequency measurements are critical. The amplifier must be capable of reproducing from 10 Hz to 2 kHz with no variation in output voltage. It is imperative that it is insensitive to any load above 4 ohms. The audio oscillator must also produce a signal with relatively low distortion, and the output voltage must not vary as the frequency is adjusted. If a PC signal generator is used, it will usually display the frequency fairly accurately, but you still need to verify that output level is constant with frequency. Many PC instruments are incapable of fractional frequencies, which may limit the accuracy of the final result.
The need for accuracy cannot be stressed too highly if accurate parameters are expected. It should also be understood that there are many variables and many opportunities for things to go awry - during measurement, construction and normal operation. Loudspeakers are variable beasties at best, and 'perfect' results will never be obtained in practice. The room will usually cause more and greater errors than a small measurement error here.
Measure the resistance across the speaker terminals to obtain Re
Measure the exact resistance of the 10 ohm source resistor, Rs
The loudspeaker driver should be suspended in free space, with no obstructions or interfering surfaces nearby. Any boundary closer than around 600mm (about 2ft) will affect the accuracy of the measurements
Connect the circuit as shown in Figure 2, and set the oscillator to approximately 100 to 200 Hz (or around 2-3 octaves above resonance) - it must be within the 'linear' range as shown on the graph above.
Set the output of the amplifier to between 0.5V and 1.0V (this is Vs). Check that the speaker is nowhere near resonance, by changing the oscillator frequency by 50Hz or so in either direction, and measure the voltage across the resistor. It should not change by any appreciable amount.
You may need to try different voltages, depending on the accuracy of your readings (or calculations). Do not be tempted to use a voltage any higher than around 1V RMS , as the speaker may be driven outside its linear range, which ruins the validity of the measurements. The parameters being measured are 'small signal', and it essential that a small signal is actually used. With an 8 Ohm driver, 10 Ohm resistor and 1V signal, you will typically have a nominal current of around 55mA.
Figure 2 - Measuring Speaker Parameters
The traditional way to measure Q is to measure the bandwidth between the -3dB frequencies, then divide the resonant frequency by the bandwidth. For example, if resonance is at 29.6Hz and -3dB frequencies are at 25Hz and 35Hz, then Q is 2.96. This would be Qms in the calculations. This method may be suitable for low-Q drivers, but you can easily make a tiny error (causing a large final calculation error) with high-Q drivers.
Most of the methods described elsewhere rely on a more complex formula that uses -6dB or even -9dB as the reference point to determine Q. This makes the measurement accuracy slightly less critical. The method below describes the -6dB method, which gives a reasonable compromise between ease of measurement and accuracy.