声学楼论坛技术交流区电声器件与系统设计各类扬声器设计室 → [转帖]从中音单元的设计谈起(四)


  共有8621人关注过本帖树形打印复制链接

主题:[转帖]从中音单元的设计谈起(四)

帅哥哟,离线,有人找我吗?
小喇叭
  1楼 | 信息 | 搜索 | 邮箱 | 主页 | UC


加好友 发短信
等级:黑侠 帖子:495 积分:5554 威望:1 精华:0 注册:2005-11-10 12:06:29
[转帖]从中音单元的设计谈起(四)  发帖心情 Post By:2008-3-17 14:04:52 [只看该作者]

难解的两难和矛盾

振膜质量

    先前提到,要降低系统共振频率最简单的就是增加振膜质量;当然,这是很容易做到的。但是,为了高频响应和发声效率,这样又算不上是好方法。那么,我们不要硬碰硬,让单体在低频时“看到”较重的音盆,而在高频时就只看到较轻的音盆。
听起来有点诡异?

    这是全音域单体的设计中非常巧妙的一招,也就是“机械性”分频。实际操作时的情况是,低音时,整个音盆一起动作,渐往高频时,利用盆分裂特性使得音盆较重 且声阻较大的外围“来不及”跟着一起动。此时,真正随着音圈动的只剩下较内圈部分,相对上这个“局部”区域的音盆比起整个面积当然就轻得多了。所以,这样 一来,随着频率的不同,音盆“实际有效”的运动质量就不同。如此,高频到低频的响应就可以同时达到。

    刚刚提到的“盆分裂”,说来轻描淡写,但稍微想想就可以体会到其中的重重困难。如何在某个频率以上使得一部分的振膜“来不及”跟着音圈动就很难控制了,再 者,要让这些部分“既然跟不上就干脆别动”也不简单,因为,最怕的是跟不上音圈的驱动而自己乱动,徒然增加音染。而且要注意的是,单体实际在播放音乐时其 中包含的频率很广,且时时刻刻在变。所以一旦这样的盆分裂不在控制之内就可以想见其失真之恐怖!

驱动力

    先前有提到,若要让高频延伸,势必要有很强的驱动力来使音盆的加速度达到高频的需要。而驱动力的来源有二:音圈及磁力系统。把音圈的圈数绕多些就能产生较 大的磁力,以便和磁力系统相互作用而产生较大的驱动力,但圈数多就意味着电感量的提高和质量的增加,这二者又都不利于高频,所以此路不通,音圈的设计仍要 取一妥协。在此,“小而美”显然比“大而不当”要好得多。

    再来,我们只好增加磁力了。虽然先前提过,强大的磁路系统会造成很强的阻尼而使得自由共振频率不易降低,但是为了要达到高频发声所需的振膜加速度,磁力的 强度还是要比一般单体强上许多,才有办法将“不轻”的音盆(注4)推出那种级数的加速度值,否则就和一般的中音单体没多大分别了。至于阻尼过度的问题,只 好由放松机械性阻尼来做补偿了。

系统整合问题

    不就只有一只单体,何来的“系统”整合?这里的系统整合指二方面:一是音域平衡的微调,二是装箱调谐的设计。此二者常相互牵动彼此。

    理论上,一个理想的全音域单体应该是在装箱后或固定在适当的障板上就可以直接连上后级,没有任何阻隔的发出天籁。但想想先前提过的种种进退两难的窘境,在 设计者绞尽脑汁、呕心沥血,好不容易做出一只能够全音域发声的单体后,你还希望它能“全面性”毫无妥协的发出你想要的一切?请记住,在各种的进退两难中, 绝大多数的出路便是“妥协”。

    若你对Stereophile熟悉的话,应该对他们刊出的各种器材测试图谱有些印象。一般来说,扩大机的频率响应图在20Hz─20KHz之间几乎就像是 尺画的一样平直,若是管机,顶多在频域二端有些微的滚降;而喇叭的频率响应图谱就崎岖得多,用坏掉的锯子来画还比它规则些。若再看衰减瀑布图和离轴响应, 那就更糟糕了,各种奇形怪状的高山深谷遍布全频段。

    为什么喇叭的频率响应没办法作到像扩大机一样的平直?因为喇叭是机械性动作的组件,一动起来各个部分的能量传递、释放和储存会非常复杂,且相互关联。如 此,免不了会存在许多的能量堆积或相互抵消的状况 ─ 能量堆积处形成共振峰;相互抵消处形成凹陷,这么一来崎岖的频率响应就不足为奇了。较佳的情况是崎岖的形态较缓和且均匀,如此可避免集中在一个特定的范围 而形成明显的音染。若起伏很大或集中在一处就不妙了,强烈的音染不但扭曲了音域平衡,其共振峰处的能量不但较强,而且久久不散(常可在瀑布图上看出),所 以会严重掩盖其本身和临近频段的解析力和微动态表现,就算用高Q值陷波器来加以衰减还是无法解决不干净的残余共振。

    另外,单体的阻尼状况也常会表现在频率响应曲线的走势上。若高端上扬,则是中低音域的阻尼相对上有些过度,听感上便是紧瘦结实,稍偏明亮;若是反过来低端上扬,则是中低音域的阻尼相对上有些不足,听感上就较为肥胖宽松而昏暗。

    说了这么多喇叭单体的“黑暗面”,不外是要提醒大家,就算历年来各“传奇”的全音域单体各自在不同的领域理皆有其“超级制作”之处,但在无可避免的众多妥 协之下,免不了有其取舍,而很难做得面面具到。就连乐器的制作都要投注极大的心力,才能获得音色的完美和全音域响度的平均,更何况是喇叭单体这个“二线” 的模仿者。

    所以,一个全音域单体,虽可以做到全音域发声,但不见得一定平直。常见的问题有:中音部分(有些是中高,有些是中低)有宽而缓的凸出,造成听感上某种程度 的音染;还有部分是高端有缓和的滚降,造成听感上较为昏暗;当然还有过度阻尼造成的低端滚降,听感上自然是又瘦又紧,低音没有量感。

    若是频率响应有些微的凸出,而这个音染又令人无法忍受,只好用一个陷波器来将这个凸出压平。若症状不严重,这个方式多半能有令人满意的结果。别瞧不起这样的组合,虽然这样一来后级到单体之间有了一些“阻

  碍”,但这算只是频率响应的修整,比起多路分音的喇叭中频率响应复杂的交叠和扭曲的相位,这还是单纯多多。而且,这类陷波器线路其实在许多喇叭的分音器上都可以找到,所以也不算什么见不得人的东西。

    若是高端滚降,则多半是因为相对上磁力系统不够力所致,或者是音盆太大,用上“机械分频”的技俩还是拖累太重,如早年的12吋甚至15吋的全音域单体或多 或少有这样的问题。此时,除了加个高音单体,别无他法。你会说,唉,这算是哪门子的全音域!别急着下定论,若妥善处理,将高音单体的响应从 16─18KHz处(或甚至更高),以每八度-6dB的斜率缓缓切入,还是能够得到很好的结果,因为分频衔接处已避开了人耳敏感的音域,且一阶分音能保持 相位一致,所以还是保有全音域的“大部分”好处。(若你手上刚好有Altec 412C,又嫌它们没高音,请赶紧通知我,我很有兴趣购买。等我弄出好声,你就别想再买回去)

    最后一种情况就是低音部分的滚降,这类全音域单体具有较强的阻尼,低音的听感常紧缩而短促,好处是细节清晰。此时若能使用适当的装箱调谐或甚至用号角负载来提升低音部分的声阻而提高效率,整体响应便很理想。若制作得当,这样的组合能提供最佳的全音域发声表现。

    既然提到了装箱调谐,我们就顺势谈下去。一般市售的喇叭,90%以上都是密闭音箱或开口调谐(一般俗称『低音反射式』)。只要是箱型喇叭便大致脱不了这二 种设计及其衍生物,只有少数例外。对于全音域单体来说,应该要使其低音域发声时的振幅愈小愈好。因为振幅愈大,不仅低音本身的失真大增,同时中高音更大受 影响。想象一下大振幅全音域发声时会是怎样的情形:中高音的小幅度快速运动“骑”在大幅度慢速的低音运动上,中高音的振动时而向你靠近;时而离你远去,可 想而知会带来很高的互调失真和都卜勒失真。虽说任何单体都会面临类似的问题,但全音域单体的工作频域远大于其它单体,所以这种情况会更明显而应极力避免或 减少。

    在刚刚提到的二种主流装箱方式中,开口调谐应是较适合全音域单体的,因为这种方式可在系统共振频率附近(一般是30─50Hz,视设计情况而异)大幅减少 音盆的冲程。如此便一举三得:失真降低、承受功率较高、发声效率也高。因为这个缘故,绝大部分的全音域单体都可以用这种装箱方式得到大致上不差的效果。

    另外,有些纯粹主义者认为,这么好的单体装在箱子里会被箱体共振所玷污,所以不用箱子,直接装在开放式障板上。某些本身低音部分就足够的单体便适于如此使 用,可以获得最无染纯净的声音,如WE/Altec 755C。据称,其中音瞬时快若闪电,比之静电喇叭毫不逊色,又有更佳的动态表现。但这个方式有一些缺点,首先当然是占地太大,因为系统的低音延伸取决于 障板面积,为取得适当的低频响应,小则需要1公尺见方,大则没有上限,要将墙壁挖二个洞来装也可;再来是效率和承受功率都会较低,低频响应也会较弱;最后 是双面发声会使得空间因素更形复杂难解,而二片大门板矗立眼前实在也不容易被大多数人接受。

    最后,便是最复杂的号角负载方式了。关于号角的种种,我们择期再详谈,现在只能大略的介绍一下。简单的说,号角就是一个呈喇叭状展开的管道,宽的这边称为 “号角开口”,窄的那边称为“喉部”。号角的形状会造成喉部的声阻大于开口,使得位在喉部附近的单体振膜和空气分子间有很大的压力,也就是说这之间的能量 可以的耦合得很好,因此发声效率很高。

    使用背载折叠号角的型式,在适当的制作下,中低音到低音部分的效率会有效的提升,刚好和之前提到的阻尼过度的单体能有几近完美的配合。


免责声明:作品版权归所属媒体与作者所有!!本站刊载此文不代表同意其说法或描述,仅为提供更多信息。如果您认为我们侵犯了您的版权,请告知!本站立即删除。有异议请联系我们。

 回到顶部